
Braxton VanGundy, Mikhail Schneide, Nipa Phojanamongkolkij, Ian Levitt
NASA Langley Research Center, Hampton, VA

Barclay Brown
Collins Aerospace, Windsor Locks, CT

Developing Concepts of Operations
Using Multi-Step Tool Techniques with

Large Language Models

Introduction
• The National Aeronautics and Space Administration (NASA) Air Mobility Pathfinders (AMP) project is

developing and evaluating concepts of operations (ConOps) for safe, secure, and scalable Urban Air
Mobility (UAM) operations.

• The team’s goal is to define structures and behaviors needed for system feasibility, readiness, and
interoperability, establish a UAM knowledge base, and trace and validate assumptions and
requirements relevant to Advanced Air Mobility (AAM).

An idea for a future air taxi hovers over a
municipal vertiport in this NASA illustration.

This NASA concept art represents how the addition
of automated technologies on the aircraft like hazard

avoidance could help ensure safe operation.AAM could be used in healthcare operations in the form of
air taxi ambulances or medical supply delivery in the future.
This concept graphic shows how a future AAM vehicle could
aid in healthcare by carrying passengers to a hospital.

2

Problem Statement

Systems
Engineer

• Systems engineers (SEs) ingest information from many
data sources:

• Complex ontology mapped in modeling software,
relational databases, and graph databases.

• SE artifacts such as sequence and activity diagrams.

• Large document repositories containing various
document formats.

• SEs also need to interface with various tools to refine
existing artifacts and models.

UAM Roadmap ontology used for the development of initial systems. Our team
plans to expand our work to other AAM ontologies as they are developed. 3

Initial Solution
• NASA Langley Research Center (LaRC) is spearheading an innovative engineering approach

known as the Knowledge-based Digital Platform (KbDP).

• This approach uses mathematical, data science, and system engineering principles to extract
meaningful knowledge from relational and graph databases, document repositories, and system
artifacts, which the human user leverages to greatly improve the efficiency and effectiveness of their
research.

• Cutting edge machine learning (ML) algorithms and large language models (LLMs) play a large role
in aiding our SEs in interrogating and navigating requirements and ConOps.

Graph database used to navigate and
predict connections between
requirements.

Advanced visualization capabilities are used to navigate the UAM
ecosystem.

Integration of LLMs to allow the user to ask questions in plain English.
No need to know complex query languages to access data and perform
analysis.

4

Initial Solution - Demo

5

Presenter
Presentation Notes
One of our main focuses was creating a digital assistant that would allow the user to harness the advanced algorithms within the graph database without having to know the associated complex cypher query language. This system also provides a mode to utilize a large corpus of UAM documents using Retrieval Augmented Generation (RAG) along with a standard chatbot mode for general questions. Currently users must select which mode they wish to use from a dropdown menu. This requires the user to know what mode they need to use in advance, and it also limits the number of modes we can deploy before the backend and UI become unwieldly.

Improved Solution
• Our team is working on a new digital assistant architecture, seen on the right in the below figure,

with the goal to address many of the user experience (UX) shortcomings of our original system
while improving the accuracy and depth of responses from the LLM.

• This new architecture will allow the system to automatically select the appropriate tool to use based
off the user’s question.

• Will result in a collaborative pipeline where tools can pass data between other tools.

6

What is “Tool Use”?
• In the context of LLMs, a “tool use”

implementation provides an LLM
access to an assortment of pre-
defined tools that it can choose
from.

• The LLM chooses the correct tool,
or tools, automatically based on the
content within the user’s question.

• These tools can be used to fetch
data related to a user’s question
from a relational database or
document repository, generate SE
artifacts, enter data into a system,
call on other LLMs, and much
more.

• Tool use is also sometimes referred
to as “function calling”.

7

Our Tools

Relational
Database

Document
Search Engine

Graph Database

UML Diagram Generator

SE Artifact Finder SysML V2 Generator

Generic question
/ answer

If it can be
programed in code,
it can be developed
into a capability the
LLM can use as a

tool.

LLM

8

Prototype Demo

9

Picking the Right Tool

10

Generating SE Artifacts
User Question

Information related to tool(s)
selected by the LLM

LLM Response

11

Generating SE Artifacts

12

Presenter
Presentation Notes
Sometimes it will generate a simplified diagram and other times it will use the requirement descriptions to generate a more complex one.

Finding SE Artifacts

13

Finding SE Artifacts

14

Implementing Tool Use - Model
• First step is finding a LLM that supports tool use. Our team developed a prototype tool use system

using a quantized version of Cohere’s C4AI Command-R 35B LLM. We deployed this model on a
local system using llama.cpp.

• For reliability, we restrict Command-R to only output the tool calls using a grammar file. Grammar
files are used to constrain the LLM’s output to a pre-defined set of responses. The grammar file is
only used for tool calls, the LLM can bypass the grammar file by calling a “direct_response” tool to
answer general questions. The grammar file is also bypassed when responding to the user after all
tool responses have been received.

• There are also many other locally deployable models that support tool use:
• Mixtral-8x22B-Instruct
• Mistral Large and Mistral Small
• Llama 3.1

• Technically most LLMs support tool use, but those models not natively supporting it require
extensive fine-tuning and / or prompt engineering.

15

Presenter
Presentation Notes
We chose command R because it was the only function calling model available that could reliably call tools. There were some LLAMA fine-tuned models available, but their performance left much to be desired.

Implementing Tool Use - Types
• There are two types of tool use implementations, Command-R supports both:

• Single-step tool use where the model calls on the appropriate tool(s) once and then processes the data
to generate a response.

• Multi-step tool use can call on several tools in sequence, data from one tool can be passed to the tools
called on next by the LLM. This is similar to an “Agent” based approach. Our implementation is a
“pseudo” multi-step approach. Tools can see information from other tools via the chat history.

16

Implementing Tool Use - Prompt Structure
The general instructions define the LLM’s role and
provides a summary of when each tool should be used.
They also include a safety preamble telling the LLM to
avoid answering questions that are immoral / harmful.

The content of each dataset / database is defined in
this section.

Each tool gets its own definition. The definitions
contain the name of the tool, additional information
about what the tool does, and the input parameters
along with the expected output from the tool.

17

Implementing Tool Use - Definition

Tool name and input /
output params.

Description of the tool

Information about the
input arguments so the
LLM knows what to send
to the tool.

Information about the
data the tool will return.

• Tool definitions link to an equivalent Python function. Definitions contain the input parameters, expected
return data, and a description of what the tool does. The description can also contain additional
instruction, for example telling the LLM how to generate UML if you have a UML generation tool.

18

Findings
• Tool approach reliably selects the correct tool based off the users question with the use of a grammar

file.

• Command-R is extremely memory heavy; the cache is not quantized so context is very memory
expensive. It supports up to 128K tokens, but we only had enough VRAM to run 10K (consumed 36GB
of VRAM).

• Command-R needs a lot of instruction in the prompt to work properly, our prompt is over 5,000 tokens!

• Difficulty getting multi-step tool calling to work reliably. Command-R supports it, but we could not get it
to consistently perform multi-step workflows where it should. Ended up deploying pseudo multi-step
approach.

• Working integration into our production system, these tools will allow SEs to more easily, and intuitively,
explore the AAM ecosystem, ultimately improving the efficiency and effectiveness of the SE's research
and decision-making processes surrounding ConOps development and validation.

19

Questions

20

References
Cohere For AI . (n.d.). Cohereforai/C4AI-command-R-V01 · hugging face. CohereForAI/c4ai-command-r-

v01 · Hugging Face. https://huggingface.co/CohereForAI/c4ai-command-r-v01

Cohere For AI . (n.d.). Tool use with Cohere’s models - cohere docs. Cohere AI.
https://docs.cohere.com/docs/tool-use

Phojanamongkolkij, N., VanGundy, B., Polavarapu, R., Levitt, I., & Brown, B. (2023, September).

Requirement Discovery Using Embedded Knowledge Graph with ChatGPT. In AI4SE & SE4AI
Research and Application Workshop.

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Zhang, S., Zhu, E., ... & Wang, C. (2023). Autogen: Enabling next-
gen llm applications via multi-agent conversation framework. arXiv preprint arXiv:2308.08155.

21

https://huggingface.co/CohereForAI/c4ai-command-r-v01
https://docs.cohere.com/docs/tool-use

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

