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Introduction
• The National Aeronautics and Space Administration (NASA) Air Mobility Pathfinders (AMP) project is 

developing and evaluating concepts of operations (ConOps) for safe, secure, and scalable Urban Air 
Mobility (UAM) operations.

• The team’s goal is to define structures and behaviors needed for system feasibility, readiness, and 
interoperability, establish a UAM knowledge base, and trace and validate assumptions and 
requirements relevant to Advanced Air Mobility (AAM). 

An idea for a future air taxi hovers over a 
municipal vertiport in this NASA illustration.

This NASA concept art represents how the addition 
of automated technologies on the aircraft like hazard 

avoidance could help ensure safe operation.AAM could be used in healthcare operations in the form of 
air taxi ambulances or medical supply delivery in the future. 
This concept graphic shows how a future AAM vehicle could 
aid in healthcare by carrying passengers to a hospital.
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Problem Statement

Systems 
Engineer

• Systems engineers (SEs) ingest information from many 
data sources:

• Complex ontology mapped in modeling software, 
relational databases, and graph databases.  

• SE artifacts such as sequence and activity diagrams.

• Large document repositories containing various 
document formats.

• SEs also need to interface with various tools to refine 
existing artifacts and models. 

UAM Roadmap ontology used for the development of initial systems.  Our team 
plans to expand our work to other AAM ontologies as they are developed. 3



Initial Solution
• NASA Langley Research Center (LaRC) is spearheading an innovative engineering approach 

known as the Knowledge-based Digital Platform (KbDP).

• This approach uses mathematical, data science, and system engineering principles to extract 
meaningful knowledge from relational and graph databases, document repositories, and system 
artifacts, which the human user leverages to greatly improve the efficiency and effectiveness of their 
research. 

• Cutting edge machine learning (ML) algorithms and large language models (LLMs) play a large role 
in aiding our SEs in interrogating and navigating requirements and ConOps. 

Graph database used to navigate and 
predict connections between 
requirements.

Advanced visualization capabilities are used to navigate the UAM 
ecosystem. 

Integration of LLMs to allow the user to ask questions in plain English.  
No need to know complex query languages to access data and perform 
analysis. 
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Initial Solution - Demo
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Presentation Notes
One of our main focuses was creating a digital assistant that would allow the user to harness the advanced algorithms within the graph database without having to know the associated complex cypher query language. This system also provides a mode to utilize a large corpus of UAM documents using Retrieval Augmented Generation (RAG) along with a standard chatbot mode for general questions. Currently users must select which mode they wish to use from a dropdown menu.  This requires the user to know what mode they need to use in advance, and it also limits the number of modes we can deploy before the backend and UI become unwieldly. 






Improved Solution
• Our team is working on a new digital assistant architecture, seen on the right in the below figure, 

with the goal to address many of the user experience (UX) shortcomings of our original system 
while improving the accuracy and depth of responses from the LLM.

• This new architecture will allow the system to automatically select the appropriate tool to use based 
off the user’s question. 

• Will result in a collaborative pipeline where tools can pass data between other tools.
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What is “Tool Use”?
• In the context of LLMs, a “tool use” 

implementation provides an LLM 
access to an assortment of pre-
defined tools that it can choose 
from.

• The LLM chooses the correct tool, 
or tools, automatically based on the 
content within the user’s question. 

• These tools can be used to fetch 
data related to a user’s question 
from a relational database or 
document repository, generate SE 
artifacts, enter data into a system, 
call on other LLMs, and much 
more. 

• Tool use is also sometimes referred 
to as “function calling”.
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Our Tools

Relational 
Database

Document 
Search Engine

Graph Database

UML Diagram Generator

SE Artifact Finder SysML V2 Generator

Generic question 
/ answer

If it can be 
programed in code, 
it can be developed 
into a capability the 
LLM can use as a 

tool.

LLM
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Prototype Demo

9



Picking the Right Tool
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Generating SE Artifacts
User Question

Information related to tool(s) 
selected by the LLM

LLM Response
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Generating SE Artifacts
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Presentation Notes
Sometimes it will generate a simplified diagram and other times it will use the requirement descriptions to generate a more complex one.



Finding SE Artifacts
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Finding SE Artifacts
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Implementing Tool Use - Model
• First step is finding a LLM that supports tool use.  Our team developed a prototype tool use system 

using a quantized version of Cohere’s C4AI Command-R 35B LLM.  We deployed this model on a 
local system using llama.cpp.

• For reliability, we restrict Command-R to only output the tool calls using a grammar file. Grammar 
files are used to constrain the LLM’s output to a pre-defined set of responses.  The grammar file is 
only used for tool calls, the LLM can bypass the grammar file by calling a “direct_response” tool to 
answer general questions.  The grammar file is also bypassed when responding to the user after all 
tool responses have been received.

• There are also many other locally deployable models that support tool use:
• Mixtral-8x22B-Instruct
• Mistral Large and Mistral Small
• Llama 3.1

• Technically most LLMs support tool use, but those models not natively supporting it require 
extensive fine-tuning and / or prompt engineering. 
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Presentation Notes
We chose command R because it was the only function calling model available that could reliably call tools.  There were some LLAMA fine-tuned models available, but their performance left much to be desired. 



Implementing Tool Use - Types
• There are two types of tool use implementations, Command-R supports both: 

• Single-step tool use where the model calls on the appropriate tool(s) once and then processes the data 
to generate a response. 

• Multi-step tool use can call on several tools in sequence, data from one tool can be passed to the tools 
called on next by the LLM.  This is similar to an “Agent” based approach. Our implementation is a 
“pseudo” multi-step approach.  Tools can see information from other tools via the chat history.
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Implementing Tool Use - Prompt Structure
The general instructions define the LLM’s role and 
provides a summary of when each tool should be used. 
They also include a safety preamble telling the LLM to 
avoid answering questions that are immoral / harmful.

The content of each dataset / database is defined in 
this section. 

Each tool gets its own definition.  The definitions 
contain the name of the tool, additional information 
about what the tool does, and the input parameters 
along with the expected output from the tool. 
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Implementing Tool Use - Definition

Tool name and input / 
output params.

Description of the tool

Information about the 
input arguments so the 
LLM knows what to send 
to the tool.

Information about the 
data the tool will return. 

• Tool definitions link to an equivalent Python function.  Definitions contain the input parameters, expected 
return data, and a description of what the tool does.  The description can also contain additional 
instruction, for example telling the LLM how to generate UML if you have a UML generation tool. 
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Findings
• Tool approach reliably selects the correct tool based off the users question with the use of a grammar 

file. 

• Command-R is extremely memory heavy; the cache is not quantized so context is very memory 
expensive. It supports up to 128K tokens, but we only had enough VRAM to run 10K (consumed 36GB 
of VRAM). 

• Command-R needs a lot of instruction in the prompt to work properly, our prompt is over 5,000 tokens! 

• Difficulty getting multi-step tool calling to work reliably.  Command-R supports it, but we could not get it 
to consistently perform multi-step workflows where it should.  Ended up deploying pseudo multi-step 
approach.

• Working integration into our production system, these tools will allow SEs to more easily, and intuitively, 
explore the AAM ecosystem, ultimately improving the efficiency and effectiveness of the SE's research 
and decision-making processes surrounding ConOps development and validation. 
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Questions
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